Strategies to Approach Stabilized Plasticity in Metals with Diminutive Volume: A Brief Review
نویسندگان
چکیده
Micrometeror submicrometer-sized metallic pillars are widely studied by investigators worldwide, not only to provide insights into fundamental phenomena, but also to explore potential applications in microelectromechanical system (MEMS) devices. While these materials with a diminutive volume exhibit unprecedented properties, e.g., strength values that approach the theoretical strength, their plastic flow is frequently intermittent as manifested by strain bursts, which is mainly attributed to dislocation activity at such length scales. Specifically, the increased ratio of free surface to volume promotes collective dislocation release resulting in dislocation starvation at the submicrometer scale or the formation of single-arm dislocation sources (truncated dislocations) at the micrometer scale. This article reviews and critically assesses recent progress in tailoring the microstructure of pillars, both extrinsically and intrinsically, to suppress plastic instabilities in micrometer or submicrometer-sized metallic pillars using an approach that involves confining the dislocations inside the pillars. Moreover, we identify strategies that can be implemented to fabricate submicrometer-sized metallic pillars that simultaneously exhibit stabilized plasticity and ultrahigh strength.
منابع مشابه
The Effect of Wetting-Drying Cycles and Plasticity Index on California Bearing Ratio of Lime Stabilized Clays
This paper aims to present an experimental and numerical study on the effect of wetting-drying cycles and plasticity index on the California Bearing Ratio (CBR) of lime stabilized clayey soils. The numerical analysis was carried out based on finite element method for comparison between results of experimental and numerical studies. Three clays with different plasticity indices were mixed with v...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کاملMechanical Properties of Low Plasticity Clay Soil Stabilized with Iron Ore Mine Tailing and Portland Cement
Due to economical and environmental issues, utilization of mineral wastes, e.g. iron ore mine tailing (IOMT), as road materials can be recommended as a sustainable alternative. In the present study, mechanical properties, as well as resistance to freezing and thawing cycles (F-T) of low plasticity clay soil stabilized with different percentages of Portland cement (0, 6, 9, 12 and 15%) and diffe...
متن کاملExtracellular Vesicles in Regenerative Medicine, a Brief Review
Extracellular vesicles were initially known as cellular waste carriers, while recent studies demonstrate that extracellular vesicles play important biological roles in all aspects of life-from single cells to mammalians. Their pathophysiological roles in some diseases like cancer are being decoded. Extracellular vesicles are divided into some classes and there are different strategies to isolat...
متن کاملA Strain Range Dependent Cyclic Plasticity Model
Hysteresis loop curves are highly important for numerical simulations of materials deformation under cyclic loadings. The models mainly take account of only the tensile half of the stabilized cycle in hysteresis loop for identification of the constants which don’t vary with accumulation of plastic strain and strain range of the hysteresis loop. This approach may be quite erroneous particularly ...
متن کامل